top of page
Jon Entine_edited.jpg

Which farming system better preserves insect populations: organic or conventional?

Jon Entine

November 2023

Science for Sustainable Agriculture

  • Facebook
  • Twitter
  • LinkedIn

Science journalist Jon Entine challenges the simplistic narrative that modern intensive agriculture is steering us toward catastrophic declines in global insect populations, highlighting to a 2020 meta-study of 166 long-term surveys which points to a levelling off of insect declines in recent decades, and an increase in some species. Global population growth and rising affluence over coming decades will require a sharp increase in necessary food calories, which can only occur by expanding farmable acreage - or by increasing yields on existing farmland. Using technology to boost yields on currently farmed acres - growing more food on less land—is the most important action we can take to protect habitat and biodiversity, he suggests, warning that a turn away from efficient, intensive agriculture to accommodate the ideological fashion of our times could be a disaster for the fragile insect population.


Many years of fragmentary, Armageddon-like studies had primed the journalism pumps and settled the media framing about the future of the global insect population: modern agriculture is steering us toward catastrophe.


But scientists remained queasy about what they increasingly came to believe was a simplistic narrative. None of the studies reaching ‘disaster conclusions’ was comprehensive. All were steeped in assumptions that could radically skew the data. Most of the world’s insect population centres were not even studied. And the declines were far from uniform. In some localities, there were reports of increases in overall insect populations, and some types of insects are increasing in abundance across the world.


Which brings us to a 2020 meta-study of 166 long-term surveys by Roel van Klink at the German Centre for Integrative Biology and his team of 30 scientists. For the first time, scientists had a full platter of studies, covering much of the world. Here was data that might answer questions that by now had turned highly ideological.


The few journalists who picked up on the study’s release noted the finding that insect declines were far less than reported in smaller-scale studies, and indeed, no catastrophe was imminent. In fact, freshwater insects like mayflies and dragonflies have actually increased over the years, they found, and insect declines in the US, especially in Midwest agricultural areas, began levelling off at the turn of the century.


Recent research from the UK Centre for Hydrology & Ecology has reinforced the German study’s findings in relation to freshwater insects, with rivers across England showing a significant improvement in river invertebrate biodiversity since 1989. Indeed the CEH study, which involved one of the largest and most wide-ranging analyses of long-term monitoring data in the world, spanning over 30 years, found improvements in invertebrate biodiversity across all regions and river types in England. 


That doesn’t mean there isn’t a real and significant problem, as van Klink took pains to point out—he called the situation “awfully alarming.” But the difference between a “hair on fire” apocalypse and a serious problem is that there is time to get a better understanding of the causes and, hopefully, make rational decisions to constructively address them.


And it was precisely on the question of causation that the new study fundamentally challenged the “accepted narrative” that modern agriculture and the overuse of pesticides are driving the observed declines.


Effects of modern agriculture

Van Klink’s finding that “crop cover,” which is the phrase he uses to describe farmland, is correlated with increases in insect populations runs directly contrary to the speculation - more often than not presented as fact - that modern farming, especially the use of GMOs and pesticides, is the problem.


The second bugaboo, climate change, also didn’t appear on the suspect list; there was simply no correlation, positive or negative. The primary driver was urbanization, most likely due to the destruction of natural habitat as swamps are drained, rivers channelized, woodlands cleared and land is paved over for housing developments, roadways and shopping malls.


Of course, the positive association between agriculture and insect population increases applies to existing fields, not forest or natural grassland cleared for cultivation. As van Klink has pointed out in interviews, the conversion of land to accommodate more farming would also destroy habitat.


But that is exactly the point if sustainability is the key: using technology to boost yields on existing cropland—growing more food on less land—is the most important action we can take to protect habitat and biodiversity.


And that’s precisely what’s been happening. In a 2013 paper titled “Peak Farmland and the Prospect for Land Sparing,” three scholars at Rockefeller University calculated that global increases in crop yields as the result of advanced technologies, including genetic engineering, meant it took about one-third the amount of land in 2010 to grow the same amount of food as in 1961.


The spur for these dramatic productivity gains is no mystery. After World War II, many of the key agricultural inputs—particularly modern pesticides, synthetic fertilizers, and advanced hybrid crops—came online in a major way. The rise accelerated with the advent of the Green Revolution in the early 1960s, and began to be widely dispersed around the world, rescuing  many countries, such as India, from the brink of mass starvation.


It is this unprecedented historic decoupling of production from land—what has become known as intensive agriculture—that so many in the environmental movement demonise and seek to reverse. One of their central claims: intensive farming is the primary culprit driving biodiversity loss and insect declines.


Yet a careful look at the data shows the narrative touting small-scale organic-focused farming as a necessary alternative is outdated, even reactionary, writes Ted Nordhaus at the Breakthrough Institute:


“Low-productivity food systems have devastating impacts on the environment. As much as three-quarters of all deforestation globally occurred prior to the Industrial Revolution, almost entirely due to two related uses, clearing land for agriculture and using wood for energy.


“…attempting to feed a world of seven-going-on-nine billion people with a preindustrial food system would almost certainly result in a massive expansion of human impacts through accelerated conversion of forests, grasslands, and other habitat to cropland and pasture


“… we need to accelerate the long-term processes of growing more food on less land. … raising yields while reducing environmental impacts will require that we farm with ever-greater precision. Raising yields through greater application of technology has often meant more pesticides, fertiliser, and water. But as technology has improved, these trends have begun to reverse.”


The organic deficit

The charm of farmer’s markets, Nordhaus writes, is not enough to abandon a system that is limiting land use to counter the effects of urbanization and driving down chemical toxicity levels. It should be noted that organic farming yields on average 10-40 percent less than non-GMO farming, which in turn is about 15 percent less productive than farms using advanced biotechnology. A 2018 study by the organic advocacy group IDDRI found that if Europe were to adopt agroecological food production practices, productivity would decrease by an average of 35 percent—meaning over 50 percent more organic-cultivated land would be needed to produce the same amount of food as produced conventionally.


The maths of land sparing through the use of modern technologies is so compelling, and the yield deficits of organic production so thoroughly catalogued, that they cannot be gainsaid. Anti-technology advocates generally prefer to avoid the topic altogether, focusing instead on Goulson-style claims about the adverse effects of chemical pesticides and ignoring organic farmers’ reliance on mechanical ploughing using carbon-belching equipment as a form of weed control, which is massively destructive to soil health and biodiversity, and is a major contributor to carbon pollution.


The major sustainability contribution of conventional agriculture in recent times is the advent of no-till farming, which began with the use of chemical herbicides like atrazine and accelerated with the debut in 1996 of herbicide-tolerant GMO crops tied to glyphosate. GMO no-till farming has resulted in a massive reduction in carbon release estimated at 37 percent by the Belgian research institute VIB.


The turn away from efficient, intensive agriculture to accommodate the ideological fashion of our times could be a disaster for the fragile insect population. Population growth and growing affluence in the developing world over coming decades will require a sharp increase in necessary food calories, which can only occur by expanding farmable acreage—or by increasing yields on currently available acres.


All of these facts make the German meta-study very uncomfortable for organic farming advocates. The correlation in insect population increases with crops challenges the widespread damage to biodiversity they have been claiming.


That may be why most of the major media reporting on the study, such as the BBC, simply ignored the finding, while others – The GuardianReutersSmithsonian—included swipes at pesticides not raised by the study authors and written in such a way that the average reader would assume it was backed up by research.


One of the most refreshing aspects of the German study, in fact, has been the humility with which this team, which has done some of the best and most thorough work yet trying to establish global insect trends, has presented their results. In an article accompanying the study in Science, addressed to researchers not associated with the project, the team points the way forward for others in this field, and indeed in any scientific endeavour.


“Advances in our knowledge about ongoing biodiversity changes and ability to predict future ones will require the incorporation of layers of nuance in patterns of change and drivers of that change.


The temptation to draw overly simple and sensational conclusions is understand­able, because it captures the attention of the public and can potentially catalyze much needed action in policy development and research arenas.


However, fear-based mes­sages often backfire. This strategy has the grave risk of undermining trust in science and can lead to denialism, fatigue, and apa­thy. Embracing nuance allows us to balance accurate reporting of worrying losses with hopeful examples of wins. Hope is a more powerful engine of change than fear.”


Jon Entine is an American science journalist with almost 50 years’ experience in both broadcast and print media. He has written several books on genetics and agriculture, and is a regular contributing columnist to newspapers and magazines. He is the founder and executive director of the non-profit science advocacy platform the Genetic Literacy Project. A version of this article first appeared on the GLP website here. This adapted version is reproduced by Science for Sustainable Agriculture with the author’s permission. 

bottom of page